Using LlamaIndex

LlamaIndex is a powerful tool for data indexing and retrieval that integrates seamlessly with MonsterAPI to implement Retrieval-Augmented Generation (RAG). This section outlines how to set up and utilize LlamaIndex for indexing data and our serverless LLM APIs.

Follow these steps to use LLM endpoints with LlamaIndex:

Step 1: Data Indexing with LlamaIndex

  1. Prepare Your Data: Collect and clean your data sources (e.g., PDFs, HTML, Word documents).

  2. Preprocess the Data: Convert the data into plain text and chunk it into manageable segments that fit within the model's context limits.

  3. Create Vectors: Use LlamaIndex’s embedding functions to convert text chunks into vectors.

  4. Build the Index: Create an index linking each chunk to its vector representation.

    import os
    from llama_index.core import SimpleDirectoryReader, VectorStoreIndex
    from llama_index.core.node_parser import SentenceSplitter
    
    # Load and prepare data
    documents = SimpleDirectoryReader('path_to_your_data').load_data()
    nodes = SentenceSplitter().split(documents)
    
    # Create an index
    index = VectorStoreIndex.from_documents(nodes)
    

Step 2: Setting Up Retrieval with LlamaIndex

  1. Encode the Query: Use the same embedding model to encode the user’s query.

  2. Retrieve Relevant Chunks: Calculate similarity between the query vector and document vectors, and retrieve the top K relevant chunks.

    from llama_index.llms.monsterapi import MonsterLLM
    
    # Initialize the MonsterLLM
    llm = MonsterLLM(model_name="your_model_name_here")
    
    # Perform a query
    query_text = "Explain Retrieval-Augmented Generation"
    response = llm.query(query_text)
    print(response)
    

Step 3: Generating Responses with MonsterLLM

  1. Combine Query and Context: Use the retrieved chunks to create a comprehensive prompt.

  2. Generate Response: Feed the prompt into MonsterLLM to generate a relevant response.

    # Text Generation Example
    prompt = "Explain the concept of Retrieval-Augmented Generation."
    response = llm.complete(prompt)
    print(response)
    

By following these steps, you can efficiently utilize LlamaIndex with our platform to build a powerful RAG system. This setup allows for accurate and contextually enriched responses by leveraging indexed data and advanced generative models.