Using LlamaIndex
LlamaIndex is a powerful tool for data indexing and retrieval that integrates seamlessly with MonsterAPI to implement Retrieval-Augmented Generation (RAG). This section outlines how to set up and utilize LlamaIndex for indexing data and our serverless LLM APIs.
Follow these steps to use LLM endpoints with LlamaIndex:
Step 1: Data Indexing with LlamaIndex
-
Prepare Your Data: Collect and clean your data sources (e.g., PDFs, HTML, Word documents).
-
Preprocess the Data: Convert the data into plain text and chunk it into manageable segments that fit within the model's context limits.
-
Create Vectors: Use LlamaIndex’s embedding functions to convert text chunks into vectors.
-
Build the Index: Create an index linking each chunk to its vector representation.
import os from llama_index.core import SimpleDirectoryReader, VectorStoreIndex from llama_index.core.node_parser import SentenceSplitter # Load and prepare data documents = SimpleDirectoryReader('path_to_your_data').load_data() nodes = SentenceSplitter().split(documents) # Create an index index = VectorStoreIndex.from_documents(nodes)
Step 2: Setting Up Retrieval with LlamaIndex
-
Encode the Query: Use the same embedding model to encode the user’s query.
-
Retrieve Relevant Chunks: Calculate similarity between the query vector and document vectors, and retrieve the top K relevant chunks.
from llama_index.llms.monsterapi import MonsterLLM # Initialize the MonsterLLM llm = MonsterLLM(model_name="your_model_name_here") # Perform a query query_text = "Explain Retrieval-Augmented Generation" response = llm.query(query_text) print(response)
Step 3: Generating Responses with MonsterLLM
-
Combine Query and Context: Use the retrieved chunks to create a comprehensive prompt.
-
Generate Response: Feed the prompt into MonsterLLM to generate a relevant response.
# Text Generation Example prompt = "Explain the concept of Retrieval-Augmented Generation." response = llm.complete(prompt) print(response)
By following these steps, you can efficiently utilize LlamaIndex with our platform to build a powerful RAG system. This setup allows for accurate and contextually enriched responses by leveraging indexed data and advanced generative models.
Updated about 1 month ago